2206(a)

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1B - CHEM1102

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2010

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

]	Multiple choice section							
ľ			Marks					
I	Pages	Max	Gained					
	2-10	32						

Short answer section

		Marks		
Page	Max	Gained		Marker
11	5			
12	5			
13	5			
14	7			
15	5			
16	4			
17	3			
18	8			
19	4			
20	7			
21	6			
22	3			
23	6			
Total	68			
Check	Check Total			

2206(a) 2010-J-2 Marks • Explain why hydrogen bonding is significant in H_2O (bp 100 °C), but not in H_2Se 2 (bp -41°C) despite both oxygen and selenium being in Group 16 of the Periodic Table. • Explain briefly why the $[Fe(H_2O)_6]^{3+}$ cation has a K_a of 6×10^{-3} , whilst the $[Fe(H_2O)_6]^{2+}$ cation has a K_a of 4×10^{-9} . 2 • Which of the following are allotropes? Explain your answer. 1 ¹⁶O, ¹⁸O, O₂, O₃, O⁻, O²⁻, O₂⁻, O₂²⁻, H₂O, H₂S, H₂O₂.

1

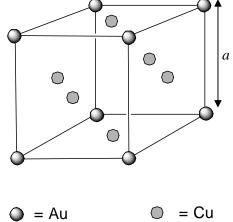
Marks • The solid-liquid curve in the phase diagram of a particular compound slopes to the left. Can the compound sublime? Explain your answer.

4

• Following blood donation, a solution of sodium oxalate is added to remove Ca²⁺ ions (as calcium oxalate, $CaC_2O_4 \cdot H_2O$, $K_{sp} 2.3 \times 10^{-9}$), which cause the blood to clot. If the concentration of Ca^{2+} ions in blood is 9.7×10^{-5} g mL⁻¹, and 100.0 mL of 0.1550 M Na₂C₂O₄ is added to a 104 mL sample of blood, what will be the concentration (in mol L⁻¹) of Ca²⁺ ions remaining in the blood?

Answer:

• Complete the	following table.	NCS ⁻ = isothiocyanate ior	1
Formula	$K_2[Zn(CN)_4]$	[Co(bipy)(NH ₃) ₄]Cl ₃	[Co(bipy) ₂ (NCS) ₂]
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Coordination geometry of the complex ion			
List all the ligand donor atoms			


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• A 20.0 mL solution of nitrous acid (HNO ₂ , $pK_a = 3.15$) was titrated to its equivalence point with 24.8 mL of 0.020 M NaOH. What is the concentration of the HNO ₂						
solution?						
	Answer:					
What was the pH at the start of the titration	on?					
	pH =					
What was the pH after (a) 12.4 mL and (b) 24.8 mL of the NaOH had been added?					
(-) 12 4						
(a) 12.4 mL: pH =	(b) 24.8 mL: pH =					
Qualitatively, how would each of these the were added to the 20.00 mL of nitrous ac	hree pH values be affected if 5 mL of water before beginning the titration?					

Marks

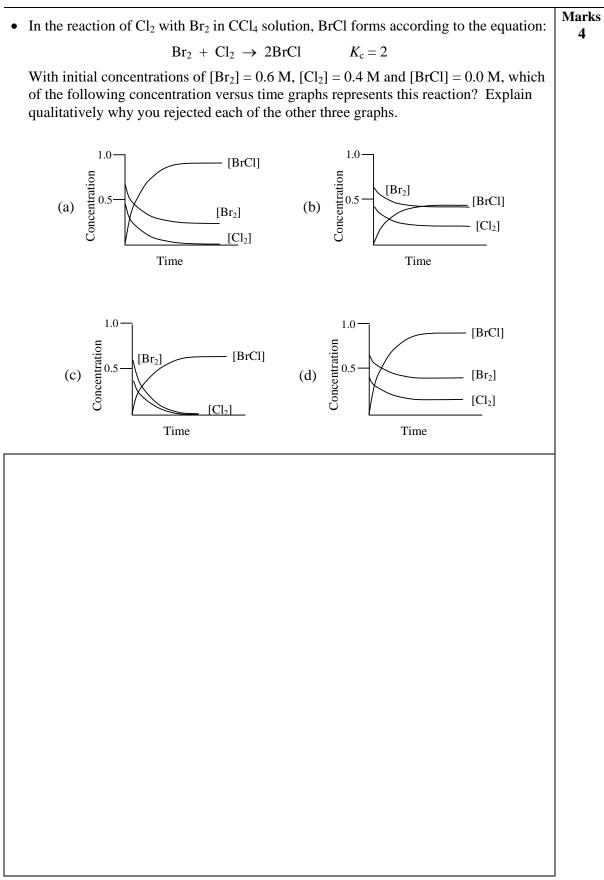
5

• The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. The unit cell dimension (edge length, *a*) for this alloy is 0.36 nm.

What is the chemical formula of the alloy?

Answer:

Pure gold is 24 carat, whilst gold alloys consisting of 75 % gold by weight are termed 18 carat gold. What carat gold is this alloy?


Answer:

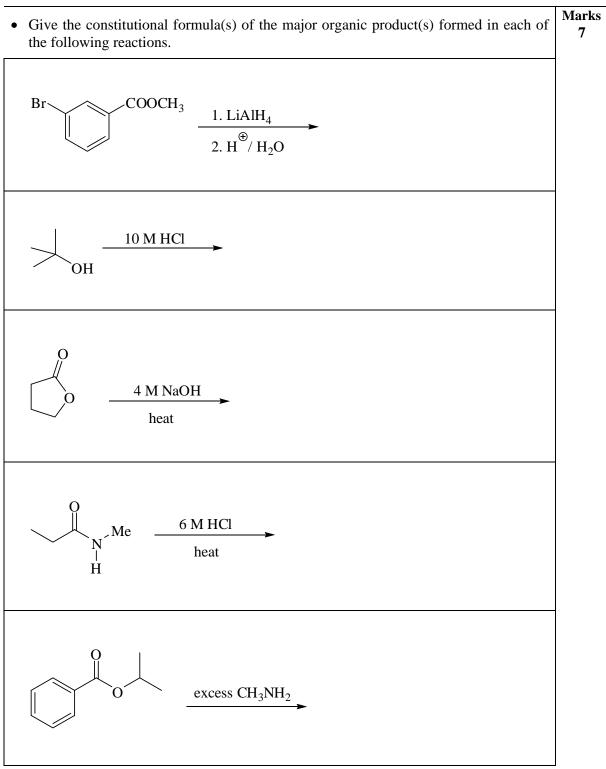
What is the volume $(in cm^3)$ of the unit cell?

Answer:

What is the density (in $g \text{ cm}^{-3}$) of the alloy?

Answer:

Marks • Hydrogenation of NO to N₂ and water is a potential means of reducing smog-forming 3 NO_x gases: $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0) . Rate (kPa s^{-1}) Experiment P_0 H₂ (kPa) P_0 NO (kPa) 1 53.3 40.0 0.137 2 53.3 20.3 0.033 3 38.5 53.3 0.213 4 19.6 53.3 0.105 What is the order of the reaction? Show all working. Answer: What is the value of the rate constant?


Answer:

Marks • Consider the following pairs of compounds. Indicate the isomeric relationship that 8 exists between the compounds in each set. Cl Η Η H₃C Η Η CH₃ Η CH₃ ĊH₃ Η H NMe₂ HQ **(A)** H NMe₂ ОH **(B)** Br Br CO₂Et CO₂Et -Cl ٠H H-Cl-(**C**) Cl--H ٠H Cl-ĊHO CHO What is the configuration of the stereogenic centre in compound (A)? Give the full name of compound (**B**) that unambiguously describes its stereochemistry. Is compound (C) a *meso* isomer? Give a reason for your answer.

Page Total:

• Complete the following table. Make sure you indicate any relevant stereochemistry.								
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)						
	H ₂ /Pd/C (catalyst)							
O ₂ N OH NO ₂	1. NaOH 2. CH ₃ Br							
	Br ₂	Br	_					
ОН	1. NaBH₄ 2. H [⊕] / H ₂ O							

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Page Total:

the two enantiomers.

A number of the above isomers are optically active. For all such compounds, draw

• Draw the constitutional formulas of all isomers of C₃H₆BrCl.

Marks 6

Select any **one** of the structures you have drawn on this page and write its full systematic name just below it.

Marks • Complete the mechanism for the following reaction. Give the structure of the 3 carbocation intermediate and indicate (using curly arrows) all the bonding changes that occur. OH dilute H_2SO_4

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Devise a synthesis of the following compounds from the starting materials indicated. 6 Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds. QН 0 0 ĨI.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10 ³	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	р							

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18
$MnO_2(s) ~+~ 4H^+(aq) ~+~ e^- \rightarrow ~Mn^{3+} ~+~ 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-E_a/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\rm univ}S^{\rm o}=R\ln\!K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$2 - 4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$

1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																		2 нешим Не 4.003
3 LITHIUM Li 6.941	4 Beryllium Be 9.012	I											5 вогол В 10.81	6 carbon C 12.01	7 Nitrogen N 14.01	8 0xygen 0 16.00	9 fluorine F 19.00	10 _{меом} Ne 20.18
11	12 MAGNESIU Mg 24.31												13 ALUMINIUN Al 26.98	14	15 рноярновия Р 30.97	16 ^{SULFUR} S 32.07	17 сніокіме СІ 35.45	18 Argon Ar 39.95
19 ротаssium К 39.10	20 ^{CALCIUM} Ca 40.08	2 scant S 44.	e C	22 тналим Ті 47.88	23 vanadium V 50.94	24 сняомиим Сг 52.00	25 manganese Mn 54.94	26 IRON Fe 55.85	27 cobalt Co 58.93	28 NICKEL Ni 58.69	29 соррек Cu 63.55	30 ZINC Zn 65.39	31 GALLIUM Ga 0 69.72	32 germanium Ge 72.59	33 ARSENIC As 74.92	34 selenium Se 78.96	35 вгоміне Br 79.90	36 ктуртол Kr 83.80
37 RUBIDIUM Rb 85.47	38 strontium Sr 87.62	1 31 YTTR Y 88.	ШМ 7	40 zirconium Zr 91.22	41 мовним Nb 92.91	42 molybdenum Mo 95.94	43 тесниетиим Тс [98.91]	44 RUTHENIUM Ru 101.07	45 ^{кнодим} Rh 102.91	46 Palladium Pd 106.4	47 silver Ag 107.87	48 CADMIU Cd 112.4	In	50 ™ Sn 118.69	51 ANTIMONY Sb 121.75	52 TELLURIUM Te 127.60	53 iodine I 126.90	54 xenon Xe 131.30
55 CAESIUM Cs 132.91	56 BARIUM Ba 137.34	57-	71	72 hafnium Hf 178.49	73 TANTALUM Ta 180.95	74 TUNGSTEN W 183.85	75 RHENIUM Re 186.2	76 озмим Os 190.2	77 IRIDIUM Ir 192.22	78 PLATINUM Pt 195.09	79 _{GOLD} Au 196.97	80 MERCUR Hg 200.5	x 81 THALLIUM TI	82 LEAD Pb	83 візмитн Ві 208.98	84 POLONIUM PO [210.0]	85 ASTATINE At [210.0]	86 каром Rn [222.0]
87 francium Fr [223.0]	88 RADIUM Ra [226.0	89-3		104 THERFORDIU Rf [261]	п 105 ^м дивним Db [262]	106 seaborgium Sg [266]	107 вонкіим Вh [262]	108 назяим Hs [265]	109 ментлекиим Мt [266]	110 darmstadtium Ds [271]	111 Roentgenium Rg [272]	112 COPERNICE CDP [283]	UM					
LANTHANO S		57 NTHANUM La 38.91	58 cert C 140	им н е	59 praseodymium Pr 140.91	60 ^{NEODYMIUM} Nd 144.24	61 promethium Pm [144.9]	62 samarium Sm 150.4	63 EUROPIUM Eu 151.96	Go	им тен 1 1	55 квіим Г b 8.93	66 dysprosium Dy 162.50	67 ноіміим Но 164.93	68 еквиим Er 167.26	69 тноліом Тт 168.93	70 vtterbium Yb 173.04	71 LUTETIUM LU 174.97

95 Americium

Am

[243.1]

96 curium

Cm

[247.1]

97 berkellium

Bk

[247.1]

98 californium

Cf

[252.1]

99 Einsteinium

Es

[252.1]

100

FERMIUM

Fm

[257.1]

101 mendelevium

Md

[256.1]

89 actinium

Ac

[227.0]

ACTINOIDS

90 THORIUM

Th

232.04

91 protactinium

Pa

[231.0]

92 uranium

U

238.03

93 NEPTUNIUM

Np

[237.0]

94

PLUTONIUM

Pu

[239.1]

PERIODIC TABLE OF THE ELEMENTS

103 LAWRENCIUM

Lr

[260.1]

102 Nobelium

No

[259.1]